Strong Rates of Convergence of a Splitting Scheme for Schrödinger Equations with Nonlocal Interaction Cubic Nonlinearity and White Noise Dispersion
Artikel i vetenskaplig tidskrift, 2022

We analyze a splitting integrator for the time discretization of the Schrodinger equation with nonlocal interaction cubic nonlinearity and white noise dispersion. We prove that this time integrator has order of convergence one in the pth mean sense, for any p > 1 in some Sobolev spaces. We prove that the splitting schemes preserves the L2-norm, which is a crucial property for the proof of the strong convergence result. Finally, numerical experiments illustrate the performance of the proposed numerical scheme.

strong convergence rates

stochastic Schródinger equations

splitting integrators

white noise dispersion

nonlocal interaction cubic nonlinearity

Författare

Charles-Edouard Bréhier

Université de Lyon

David Cohen

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

SIAM-ASA Journal on Uncertainty Quantification

21662525 (eISSN)

Vol. 10 1 453-480

Numerisk analys och simulering av PDE med slumpmässig dispersion

Vetenskapsrådet (VR) (2018-04443), 2019-01-01 -- 2022-12-31.

Ämneskategorier (SSIF 2011)

Beräkningsmatematik

Reglerteknik

Matematisk analys

DOI

10.1137/20M1378168

Mer information

Senast uppdaterat

2022-07-04