Competing oxidation mechanisms in Cu nanoparticles and their plasmonic signatures
Artikel i vetenskaplig tidskrift, 2022

Chemical reactions involving nanoparticles often follow complex processes. In this respect, real-time probing of single nanoparticles under reactive conditions is crucial for uncovering the mechanisms driving the reaction pathway. Here, we have captured in situ the oxidation of single Cu nanoparticles to unravel a sequential competitive activation of different mechanisms at temperatures 50-200 degrees C. Using environmental scanning transmission electron microscopy, we monitor the evolution of oxide formation with sub-nanometre spatial resolution, and show how the prevalence of oxide island nucleation, Cabrera-Mott, Valensi-Carter and Kirkendall mechanisms under different conditions determines the morphology of the particles. Moreover, using in situ electron energy-loss spectroscopy, we probe the localised surface plasmons of individual particles during oxidation, and with the aid of finite-difference time-domain electrodynamic simulations investigate the signature of each mechanism in their plasmonic response. Our results shed light on the rich and intricate processes involved in the oxidation of nanoparticles, and provide in-depth insight into how these processes govern their morphology and optical response, beneficial for applications in catalysis, sensing, nanomedicine and plasmonics.

Författare

Sara Nilsson

Chalmers, Fysik, Kemisk fysik

Monia R. Nielsen

Danmarks Tekniske Universitet (DTU)

Joachim Fritzsche

Chalmers, Fysik, Kemisk fysik

Christoph Langhammer

Chalmers, Fysik, Kemisk fysik

Shima Kadkhodazadeh

Danmarks Tekniske Universitet (DTU)

Nanoscale

2040-3364 (ISSN) 2040-3372 (eISSN)

Vol. 14 23 8332-8341

Ämneskategorier

Oorganisk kemi

Materialkemi

Annan fysik

Annan kemi

Infrastruktur

Nanotekniklaboratoriet

DOI

10.1039/d2nr01054b

PubMed

35616189

Mer information

Senast uppdaterat

2024-03-07