Co-Evaluation of Pattern Matching Algorithms on IoT Devices with Embedded GPUs
Paper i proceeding, 2019
In this work, we present a systematic and comprehensive benchmark that allows us to co-evaluate both existing and new pattern matching algorithms on heterogeneous devices equipped with embedded GPUs, suitable for medium- to high-level IoT deployments. We evaluate the algorithms on such a heterogeneous device, in close connection with the architectural features of the platform and provide insights on how these features affect the algorithms' behavior. We find that, in our target embedded platform, GPU-based pattern matching algorithms have competitive performance compared to the CPU and consume half as much energy as the CPU-based variants. Based on these insights, we also propose HYBRID, a new pattern matching approach that efficiently combines techniques from existing approaches and outperforms them by 1.4x, across a range of realistic and synthetic data sets. Our benchmark details the effect of various optimizations, thus providing a path forward to make existing security mechanisms such as NIDS deployable on IoT devices.
embedded devices
NIDS
GPU computing
pattern matching
Författare
Charalampos Stylianopoulos
Chalmers, Data- och informationsteknik, Nätverk och system
Simon Kindström
Student vid Chalmers
Magnus Almgren
Chalmers, Data- och informationsteknik, Nätverk och system
Olaf Landsiedel
Chalmers, Data- och informationsteknik, Nätverk och system
Marina Papatriantafilou
Chalmers, Data- och informationsteknik, Nätverk och system
ACM International Conference Proceeding Series
Vol. 2019-January 17-27
978-1-4503-7628-0 (ISBN)
San Juan, Puerto Rico,
Säkra IT-system för drift och övervakning av samhällskritisk infrastruktur
Myndigheten för samhällsskydd och beredskap (2015-828), 2015-09-01 -- 2020-08-31.
RIOT: Ett resilient sakernas internet
Myndigheten för samhällsskydd och beredskap (MSB2018-12526), 2019-01-01 -- 2023-12-31.
Integrated cyber-physical solutions for intelligent distribution grid with high penetration of renewables (UNITED-GRID)
Europeiska kommissionen (EU) (EC/H2020/773717), 2017-11-01 -- 2020-04-30.
Ämneskategorier
Kommunikationssystem
Datavetenskap (datalogi)
Datorsystem
DOI
10.1145/3359789.3359811