Multiple Object Trajectory Estimation Using Backward Simulation
Artikel i vetenskaplig tidskrift, 2022

This paper presents a general solution for computing the multi-object posterior for sets of trajectories from a sequence of multi-object (unlabelled) filtering densities and a multi-object dynamic model. Importantly, the proposed solution opens an avenue of trajectory estimation possibilities for multi-object filters that do not explicitly estimate trajectories. In this paper, we first derive a general multi-trajectory backward smoothing equation based on random finite sets of trajectories. Then we show how to sample sets of trajectories using backward simulation for Poisson multi-Bernoulli filtering densities, and develop a tractable implementation based on ranked assignment. The performance of the resulting multi-trajectory particle smoothers is evaluated in a simulation study, and the results demonstrate that they have superior performance in comparison to several state-of-the-art multi-object filters and smoothers.

backward simulation

Trajectory

Density measurement

Mathematical models

Electrical engineering

random finite sets

Probabilistic logic

Multi-object tracking

forward-backward smoothing

sets of trajectories

Smoothing methods

Signal processing algorithms

Författare

Yuxuan Xia

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Lennart Svensson

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Angel F. Garcia-Fernandez

University of Liverpool

Jason L. Williams

Commonwealth Scientific and Industrial Research Organisation (CSIRO)

Daniel Svensson

NVIDIA

Karl Granström

Embark Trucks Inc.

IEEE Transactions on Signal Processing

1053-587X (ISSN) 1941-0476 (eISSN)

Vol. 70 3249-3263

Ämneskategorier

Sannolikhetsteori och statistik

Signalbehandling

Datorseende och robotik (autonoma system)

DOI

10.1109/TSP.2022.3184794

Mer information

Senast uppdaterat

2022-11-18