Numerical approximation and simulation of the stochastic wave equation on the sphere
Artikel i vetenskaplig tidskrift, 2022

Solutions to the stochastic wave equation on the unit sphere are approximated by spectral methods. Strong, weak, and almost sure convergence rates for the proposed numerical schemes are provided and shown to depend only on the smoothness of the driving noise and the initial conditions. Numerical experiments confirm the theoretical rates. The developed numerical method is extended to stochastic wave equations on higher-dimensional spheres and to the free stochastic Schrödinger equation on the unit sphere.

Gaussian random fields

Strong and weak convergence rates

Spectral Galerkin methods

Stochastic Schrödinger equation

Sphere

Stochastic wave equation

Karhunen–Loève expansion

Stochastic partial differential equations

Almost sure convergence

Spherical harmonic functions

Författare

David Cohen

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Annika Lang

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Calcolo

0008-0624 (ISSN) 1126-5434 (eISSN)

Vol. 59 3 32

Numerisk analys och simulering av PDE med slumpmässig dispersion

Vetenskapsrådet (VR) (2018-04443), 2019-01-01 -- 2022-12-31.

Efficienta approximeringsmetoder för stokastiska fält på mångfalder

Vetenskapsrådet (VR) (2020-04170), 2021-01-01 -- 2024-12-31.

Ämneskategorier

Beräkningsmatematik

Strömningsmekanik och akustik

Matematisk analys

DOI

10.1007/s10092-022-00472-7

Mer information

Senast uppdaterat

2022-09-02