GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations
Artikel i vetenskaplig tidskrift, 2022

We present our latest advancements of machine-learned potentials (MLPs) based on the neuroevolution potential (NEP) framework introduced in Fan et al. [Phys. Rev. B 104, 104309 (2021)] and their implementation in the open-source package gpumd. We increase the accuracy of NEP models both by improving the radial functions in the atomic-environment descriptor using a linear combination of Chebyshev basis functions and by extending the angular descriptor with some four-body and five-body contributions as in the atomic cluster expansion approach. We also detail our efficient implementation of the NEP approach in graphics processing units as well as our workflow for the construction of NEP models and demonstrate their application in large-scale atomistic simulations. By comparing to state-of-the-art MLPs, we show that the NEP approach not only achieves above-average accuracy but also is far more computationally efficient. These results demonstrate that the gpumd package is a promising tool for solving challenging problems requiring highly accurate, large-scale atomistic simulations. To enable the construction of MLPs using a minimal training set, we propose an active-learning scheme based on the latent space of a pre-trained NEP model. Finally, we introduce three separate Python packages, viz., gpyumd, calorine, and pynep, that enable the integration of gpumd into Python workflows.

Författare

Zheyong Fan

Bohai University

Yanzhou Wang

Aalto-Yliopisto

Penghua Ying

Harbin Institute of Technology

Keke Song

University of Science and Technology Beijing

Junjie Wang

Nanjing University

Yong Wang

Nanjing University

Zezhu Zeng

The University of Hong Kong

Ke Xu

Xiamen University

Eric Lindgren

Chalmers, Fysik, Kondenserad materie- och materialteori

Magnus Rahm

Chalmers, Fysik, Kondenserad materie- och materialteori

Alexander J. Gabourie

Stanford University

Jiahui Liu

University of Science and Technology Beijing

Haikuan Dong

Bohai University

Jianyang Wu

Xiamen University

Yue Chen

The University of Hong Kong

Zheng Zhong

Harbin Institute of Technology

Jian Sun

Nanjing University

Paul Erhart

Chalmers, Fysik, Kondenserad materie- och materialteori

Yanjing Su

University of Science and Technology Beijing

Tapio Ala-Nissila

Aalto-Yliopisto

Journal of Chemical Physics

0021-9606 (ISSN) 1089-7690 (eISSN)

Vol. 157 11 114801

Fasbeteende och elektroniska egenskaper hos halogenid-perovskiter från simulering på atomskala

Vetenskapsrådet (VR) (2020-04935), 2020-12-01 -- 2024-11-30.

Karbider som vätefällor i stål

Vetenskapsrådet (VR) (2021-05072), 2021-12-01 -- 2025-11-30.

Analys och modelleringstjänst för tekniska material studerad med neutroner

Vetenskapsrådet (VR) (2018-06482), 2018-11-01 -- 2020-12-31.

Sveriges Neutronforskarskola - SwedNESS

Stiftelsen för Strategisk forskning (SSF) (GSn15-0008), 2016-07-01 -- 2021-06-30.

Stiftelsen för Strategisk forskning (SSF) (GSn15-0008), 2017-01-01 -- 2020-12-31.

Ämneskategorier

Beräkningsmatematik

Bioinformatik (beräkningsbiologi)

Datavetenskap (datalogi)

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

Styrkeområden

Materialvetenskap

DOI

10.1063/5.0106617

PubMed

36137808

Mer information

Senast uppdaterat

2023-12-12