Safe Trajectory Tracking in Uncertain Environments
Artikel i vetenskaplig tidskrift, 2023

In Model Predictive Control (MPC) formulations of trajectory tracking problems, infeasible reference trajectories and a-priori unknown constraints can lead to cumbersome designs, aggressive tracking, and loss of recursive feasibility. This is the case, for example, in trajectory tracking applications for mobile systems in the presence of constraints which are not fully known a-priori. In this paper, we propose a new framework called Model Predictive Flexible trajectory Tracking Control (MPFTC), which relaxes the trajectory tracking requirement. Additionally, we accommodate recursive feasibility in the presence of a-priori unknown constraints, which might render the reference trajectory infeasible. In the proposed framework, constraint satisfaction is guaranteed at all times while the reference trajectory is tracked as good as constraint satisfaction allows, thus simplifying the controller design and reducing possibly aggressive tracking behavior. The proposed framework is illustrated with three numerical examples.

Trajectory tracking

Trajectory

uncertain constraints

Behavioral sciences

stability

Safety

recursive feasibility

safety

nonlinear MPC

Standards

Predictive models

flexible trajectory tracking

Numerical stability

Författare

Ivo Batkovic

Chalmers, Elektroteknik, System- och reglerteknik

Mohammad Ali

Research Department

Paolo Falcone

Chalmers, Elektroteknik, System- och reglerteknik

Mario Zanon

Chalmers, Elektroteknik, System- och reglerteknik

IMT Alti Studi Lucca

IEEE Transactions on Automatic Control

0018-9286 (ISSN) 1558-2523 (eISSN)

Vol. 68 7 4204-4217

Ämneskategorier

Datorteknik

Elektroteknik och elektronik

Reglerteknik

DOI

10.1109/TAC.2022.3207875

Mer information

Senast uppdaterat

2023-07-24