Metabolic reconfiguration enables synthetic reductive metabolism in yeast
Artikel i vetenskaplig tidskrift, 2022

Cell proliferation requires the integration of catabolic processes to provide energy, redox power and biosynthetic precursors. Here we show how the combination of rational design, metabolic rewiring and recombinant expression enables the establishment of a decarboxylation cycle in the yeast cytoplasm. This metabolic cycle can support growth by supplying energy and increased provision of NADPH or NADH in the cytosol, which can support the production of highly reduced chemicals such as glycerol, succinate and free fatty acids. With this approach, free fatty acid yield reached 40% of theoretical yield, which is the highest yield reported for Saccharomyces cerevisiae to our knowledge. This study reports the implementation of a synthetic decarboxylation cycle in the yeast cytosol, and its application in achieving high yields of valuable chemicals in cell factories. Our study also shows that, despite extensive regulation of catabolism in yeast, it is possible to rewire the energy metabolism, illustrating the power of biodesign.

Författare

Tao Yu

Chalmers, Biologi och bioteknik, Systembiologi

Shenzhen Institute of Advanced Technology

Danmarks Tekniske Universitet (DTU)

Novo Nordisk Fonden

Quanli Liu

Novo Nordisk Fonden

Danmarks Tekniske Universitet (DTU)

Chalmers, Biologi och bioteknik, Systembiologi

Xiang Wang

Shenzhen Institute of Advanced Technology

Xiangjian Liu

Shenzhen Institute of Advanced Technology

Yun Chen

Novo Nordisk Fonden

Chalmers, Biologi och bioteknik, Systembiologi

Danmarks Tekniske Universitet (DTU)

Jens B Nielsen

Novo Nordisk Fonden

Chalmers, Biologi och bioteknik, Systembiologi

Danmarks Tekniske Universitet (DTU)

BioInnovation Institute

Publicerad i

Nature Metabolism

25225812 (eISSN)

Vol. 4Nummer/häfte 11s. 1551-1559

Kategorisering

Ämneskategorier

Cellbiologi

Kemiska processer

Energisystem

Identifikatorer

DOI

10.1038/s42255-022-00654-1

PubMed

36302903

Mer information

Senast uppdaterat

2024-03-07