Online Learning of Network Bottlenecks via Minimax Paths
Artikel i vetenskaplig tidskrift, 2023

In this paper, we study bottleneck identification in networks via extracting minimax paths. Many real-world networks have stochastic weights for which full knowledge is not available in advance. Therefore, we model this task as a combinatorial semi-bandit problem to which we apply a combinatorial version of Thompson Sampling and establish an upper bound on the corresponding Bayesian regret. Due to the computational intractability of the problem, we then devise an alternative problem formulation which approximates the original objective. Finally, we experimentally evaluate the performance of Thompson Sampling with the approximate formulation on real-world directed and undirected networks.

Online Learning

Bottleneck Identification

Combinatorial Semi-bandit

Thompson Sampling

Författare

Niklas Åkerblom

Volvo Cars

Chalmers, Data- och informationsteknik, Data Science och AI

Fazeleh Sadat Hoseini

Chalmers, Data- och informationsteknik, Data Science och AI

Morteza Haghir Chehreghani

Chalmers, Data- och informationsteknik, Data Science och AI

Machine Learning

0885-6125 (ISSN) 1573-0565 (eISSN)

Vol. 112 1 131-150

EENE: Energieffektiv Navigering för Elfordon

FFI - Fordonsstrategisk forskning och innovation (2018-01937), 2019-01-01 -- 2022-12-31.

Styrkeområden

Informations- och kommunikationsteknik

Transport

Ämneskategorier (SSIF 2011)

Datavetenskap (datalogi)

Datorseende och robotik (autonoma system)

DOI

10.1007/s10994-022-06270-0

Mer information

Senast uppdaterat

2023-01-30