A micromechanics based model for rate dependent compression loaded unidirectional composites
Artikel i vetenskaplig tidskrift, 2023

Strain-rate effects in a unidirectional non-crimp fabric carbon/epoxy composite are addressed. To allow for kink-band formation including strain-rate  effects and damage in such composites, the paper advances a recent model focused on compression loading at small off-axis angles. The model is based on computational \textit{homogenization} with a subscale represented by matrix and fibre constituents at finite deformation. The fibre constituent is assumed to be elastic transversely isotropic and the matrix is viscoelastic--viscoplastic with damage degradation. Novel model improvements of special importance to small off-axis loading relate to the \textit{isostress} formulation of the homogenized response in transverse shear. In this context, an enhanced homogenized elastic response is proposed based on Halpin--Tsai corrections to account for the nonuniform stress distribution on the microscale. The model captures the strongly rate sensitive kink-band formation due to localized matrix shearing and fibre rotation, confirming the experimentally observed increase in compressive strength for high strain rates.

Viscoelasticity--viscoplasticity

Non-linear behaviour

Structural composites

Material modelling

Damage mechanics

Författare

Vivekendra Singh

RISE Research Institutes of Sweden

Ragnar Larsson

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Robin Olsson

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

RISE Research Institutes of Sweden

Erik Marklund

RISE Research Institutes of Sweden

Composites Science and Technology

0266-3538 (ISSN)

Vol. 232 109821

Drivkrafter

Hållbar utveckling

Ämneskategorier

Teknisk mekanik

Annan materialteknik

Kompositmaterial och -teknik

Fundament

Grundläggande vetenskaper

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

Styrkeområden

Materialvetenskap

DOI

10.1016/j.compscitech.2022.109821

Mer information

Senast uppdaterat

2023-01-09