MicroTL: Transfer Learning on Low-Power IoT Devices
Paper i proceeding, 2022

Deep Neural Networks (DNNs) on IoT devices are becoming readily available for classification tasks using sensor data like images and audio. However, DNNs are trained using extensive computational resources such as GPUs on cloud services, and once being quantized and deployed on the IoT device remain unchanged. We argue in this paper, that this approach leads to three disadvantages. First, IoT devices are deployed in real-world scenarios where the initial problem may shift over time (e.g., to new or similar classes), but without re-training, DNNs cannot adapt to such changes. Second, IoT devices need to use energy-preserving communication with limited reliability and network bandwidth, which can delay or restrict the transmission of essential training sensor data to the cloud. Third, collecting and storing training sensor data in the cloud poses privacy concerns. A promising technique to mitigate these concerns is to utilize on-device Transfer Learning (TL). However, bringing TL to resource-constrained devices faces challenges and tradeoffs in computational, energy, and memory constraints, which this paper addresses. This paper introduces MicroTL, Transfer Learning (TL) on low-power IoT devices. MicroTL tailors TL to IoT devices without the communication requirement with the cloud. Notably, we found that the MicroTL takes 3x less energy and 2.8x less time than transmitting all data to train an entirely new model in the cloud, showing that it is more efficient to retrain parts of an existing neural network on the IoT device.

IoT

Transfer learning

Författare

Christos Profentzas

Nätverk och System

Magnus Almgren

Nätverk och System

Olaf Landsiedel

Nätverk och System

Proceedings - Conference on Local Computer Networks, LCN

34-41
9781665480017 (ISBN)

2022 IEEE 47th Conference on Local Computer Networks (LCN)
Edmonton, Canada,

KIDSAM: Kunskap- och informationssdelning i digitala samverkansprojekt

VINNOVA (2018-03966), 2018-11-01 -- 2021-11-30.

AgreeOnIT: Lättvikts konsensus och distribuerat datakunskap i resursbegränsade sakernas Internet

Vetenskapsrådet (VR) (37200024), 2019-01-01 -- 2022-12-31.

RIOT: Ett resilient sakernas internet

Myndigheten för samhällsskydd och beredskap (MSB2018-12526), 2019-01-01 -- 2023-12-31.

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier (SSIF 2011)

Datavetenskap (datalogi)

Datorsystem

DOI

10.1109/LCN53696.2022.9843735

ISBN

9781665480017

Mer information

Senast uppdaterat

2023-04-21