Investigation of low-dissipation low-dispersion schemes for incompressible and compressible flows in scale-resolving simulations
Artikel i vetenskaplig tidskrift, 2023

A comprehensive study is conducted on a second-order low-dissipation low-dispersion (LD2) scheme in scale-resolving simulations of both incompressible and compressible flows, using a node-based unstructured CFD solver. The scheme deploys a higher order central reconstruction of the face values (up to fourth-order on structured meshes) and a matrix dissipation formulation to reduce the dispersive and dissipative numerical errors. The LD2 scheme is examined for compressible flow cases involving shock discontinuities, LD2-Compressible (LD2C), and is verified in a classical shock-tube problem. The scheme is then further verified in Large-Eddy Simulations (LES) of decaying isotropic turbulence (DIT) in comparison with available experimental data. It is shown that in scale-resolving simulations, the LD2C scheme is able to significantly improve the prediction as compared to a conventional second-order central scheme. The scheme is then further assessed and verified in hybrid Reynolds-Averaged Navier–Stokes (RANS)-LES computations for the subsonic and supersonic turbulent channel flow, where excellent agreement with reference DNS and correlations are observed. Moreover, a supersonic base flow is simulated using hybrid RANS-LES, where improved predictions are observed. The LD2C scheme exploits a shock sensor incorporating vorticity and is shown to improve the prediction of the resolved shear stress in the shear layer of compression.

Compressible flows

Low-dissipation low-dispersion scheme

Turbulent flows

Scale-resolving simulations

Författare

Magnus Carlsson

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Lars Davidson

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Peng Shia-Hui

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Totalförsvarets forskningsinstitut (FOI)

Sebastian Arvidson

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Saab

Computers and Fluids

00457930 (ISSN)

Vol. 251 105741

Ämneskategorier

Geofysisk teknik

Teknisk mekanik

Strömningsmekanik och akustik

DOI

10.1016/j.compfluid.2022.105741

Mer information

Senast uppdaterat

2022-12-28