Back-Pressure Traffic Signal Control in the Presence of Noisy Queue Information
Paper i proceeding, 2023

In this paper, we consider decentralized traffic signal control policies using the max-weight algorithm when the queue size measurement is noisy. We first show analytically that the standard max-weight algorithm is throughput optimal even under noisy queue measurements. However, the average steady-state queue lengths and subsequently the average delays are increased. In order to alleviate the effect of these noisy measurements we add filtering to the max-weight algorithm; more specifically, we propose the Filtered-max-weight algorithm, which is based on particle filtering. We demonstrate via simulations that the Filtered-max-weight algorithm performs better than the standard max-weight algorithm in the presence of noisy measurements.

Technologies for control in transportation

traffic control

noisy

back pressure

traffic flow

queue

Modelling and control of road traffic networks

Scheduling and optimization of transportation systems

Författare

Charalambous Themistoklis

Muwahida Liaquat

Balázs Adam Kulcsár

Chalmers, Elektroteknik, System- och reglerteknik

Henk Wymeersch

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

IFAC Proceedings Volumes (IFAC-PapersOnline)

14746670 (ISSN)

22nd IFAC World Congress
Yokohama, Japan,

Real-Time Robust and AdaptIve Learning in ElecTric VEhicles (RITE)

Chalmers AI-forskningscentrum (CHAIR), 2020-01-01 -- 2021-12-31.

Chalmers, 2020-01-01 -- 2021-12-31.

Ämneskategorier

Annan data- och informationsvetenskap

Reglerteknik

Datavetenskap (datalogi)

Styrkeområden

Transport

Mer information

Skapat

2023-03-04