Machine Learning for Optical Network Security Monitoring: A Practical Perspective
Reviewartikel, 2020
and localization of optical-layer attacks, and to their integration with standard Network Management Systems (NMSs).
We propose a framework for cognitive security diagnostics that comprises an attack detection module with Supervised Learning (SL), Semi-Supervised Learning (SSL) and Unsupervised Learning (UL) approaches, and an attack localization module that deduces the location of a harmful connection and/or a breached link. The influence of false positives and false negatives is addressed by a newly proposed Window-based Attack Detection (WAD) approach. We provide practical implementation guidelines for the integration of the framework into the NMS and evaluate its performance in an experimental network testbed subjected to attacks, resulting with the largest optical-layer security experimental dataset reported to date.
monitoring
optical network security
attack detection
machine learning
Författare
Marija Furdek Prekratic
Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk
Carlos Natalino Da Silva
Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk
Fabian Lipp
Infosim GmbH & Co. KG
David Hock
Infosim GmbH & Co. KG
Andrea Di Giglio
Telecom Italia S.P.A
Marco Schiano
Telecom Italia S.P.A
Journal of Lightwave Technology
0733-8724 (ISSN) 1558-2213 (eISSN)
Vol. 38 11 2860-2871 9064530Skydda optiska kommunikationsnätverk från cyber-säkerhetsattacker
Vetenskapsrådet (VR) (2019-05008), 2020-01-01 -- 2023-12-31.
Styrkeområden
Informations- och kommunikationsteknik
Drivkrafter
Hållbar utveckling
Ämneskategorier (SSIF 2011)
Telekommunikation
DOI
10.1109/JLT.2020.2987032