The probabilistic vs the quantization approach to Kähler–Einstein geometry
Artikel i vetenskaplig tidskrift, 2024

In the probabilistic construction of Kähler–Einstein metrics on a complex projective algebraic manifold X—involving random point processes on X—a key role is played by the partition function. In this work a new quantitative bound on the partition function is obtained. It yields, in particular, a new direct analytic proof that X admits a Kähler–Einstein metrics if it is uniformly Gibbs stable. The proof makes contact with the quantization approach to Kähler–Einstein geometry.

Författare

Robert Berman

Chalmers, Matematiska vetenskaper, Algebra och geometri

Mathematische Annalen

0025-5831 (ISSN) 1432-1807 (eISSN)

Vol. 388 4 4383-4404

Ämneskategorier

Geometri

Matematisk analys

DOI

10.1007/s00208-023-02627-5

Mer information

Senast uppdaterat

2024-03-30