Rigidity Preserving Image Transformations and Equivariance in Perspective
Paper i proceeding, 2023

We characterize the class of image plane transformations which realize rigid camera motions and call these transformations ‘rigidity preserving’. It turns out that the only rigidity preserving image transformations are homographies corresponding to rotating the camera. In particular, 2D translations of pinhole images are not rigidity preserving. Hence, when using CNNs for 3D inference tasks, it can be beneficial to modify the inductive bias from equivariance w.r.t. translations to equivariance w.r.t. rotational homographies. We investigate how equivariance with respect to rotational homographies can be approximated in CNNs, and test our ideas on 6D object pose estimation. Experimentally, we improve on a competitive baseline.

Författare

Lucas Brynte

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Georg Bökman

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Axel Flinth

Umeå universitet

Fredrik Kahl

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

03029743 (ISSN) 16113349 (eISSN)

Vol. 13886 LNCS 59-76
9783031314377 (ISBN)

23nd Scandinavian Conference on Image Analysis, SCIA 2023
Lapland, Finland,

Deep learning för 3D-igenkänning

Wallenberg AI, Autonomous Systems and Software Program, 2018-01-01 -- .

Ämneskategorier

Diskret matematik

Datorseende och robotik (autonoma system)

DOI

10.1007/978-3-031-31438-4_5

Mer information

Senast uppdaterat

2023-12-01