Causal sparse domination of Beurling maximal regularity operators
Artikel i vetenskaplig tidskrift, 2023

We prove boundedness of Calderön–Zygmund operators acting in Banach function spaces on domains, defined by the L 1 Carleson functional and Lq (1 < q < ∞) Whitney averages. For such bounds to hold, we assume that the operator maps towards the boundary of the domain. We obtain the Carleson estimates by proving a pointwise domination of the operator, by sparse operators with a causal structure. The work is motivated by maximal regularity estimates for elliptic PDEs and is related to one-sided weighted estimates for singular integrals.

Författare

Tuomas Hytönen

Helsingin Yliopisto

Andreas Rosén

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Journal dAnalyse Mathematique

0021-7670 (ISSN) 15658538 (eISSN)

Vol. 150 2 645-672

Ämneskategorier

Matematisk analys

DOI

10.1007/s11854-023-0285-0

Mer information

Senast uppdaterat

2023-10-03