From 2d-van der Waals magnets to superconductor hybrid devices
Doktorsavhandling, 2023

This thesis focuses on two distinct topics in different lines of research within mesoscopic physics. The first topic is related to
magnons in 2d-van der Waals magnets. In extension to previous work, we discuss properties of the magnon disperson of a
bilayer system and uncover an underlying PT-symmetry, which explains the topology of the magnon spectrum and the
absence of a magnon Hall effect in our system. The second topic deals with a quantum dot device (NDS) consisting of a
quantum dot proximized by a large gap superconductor and weakly coupled to a normal metal. We study the transient
dynamics, including charge and heat transport after distinct switches in gate voltage, which prepare the initial state. The
analysis makes significantly use of a so called fermionic duality, a novel dissipative symmetry. This way we obtain a detailed
microscopic understanding of how to control charge and heat currents in this NDS-nanostructure.

Författare

Lara Celine Ortmanns

RWTH Aachen University

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Ämneskategorier (SSIF 2011)

Den kondenserade materiens fysik

ISBN

978-91-7905-882-1

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5348

Utgivare

Chalmers

Mer information

Senast uppdaterat

2024-12-05