Experimental Validation of Safe MPC for Autonomous Driving in Uncertain Environments
Artikel i vetenskaplig tidskrift, 2023

The full deployment of autonomous driving systems on a worldwide scale requires that the self-driving vehicle can be operated in a provably safe manner, i.e., the vehicle must be able to avoid collisions in any possible traffic situation. In this article, we propose a framework based on model predictive control (MPC) that endows the self-driving vehicle with the necessary safety guarantees. In particular, our framework ensures constraint satisfaction at all times while tracking the reference trajectory as close as obstacles allow, resulting in a safe and comfortable driving behavior. To discuss the performance and real-time capability of our framework, we provide first an illustrative simulation example, and then, we demonstrate the effectiveness of our framework in experiments with a real test vehicle.

Roads

Trajectory

Safety

Autonomous vehicles

uncertain constraints

Predictive models

Behavioral sciences

recursive feasibility

nonlinear predictive control

safety

Autonomous driving

Planning

Författare

Ivo Batkovic

Chalmers, Elektroteknik, System- och reglerteknik

Ankit Gupta

Zenseact AB

Mario Zanon

IMT Alti Studi Lucca

Paolo Falcone

Chalmers, Elektroteknik, System- och reglerteknik

IEEE Transactions on Control Systems Technology

1063-6536 (ISSN) 15580865 (eISSN)

Vol. 31 5 2027-2042

Ämneskategorier

Programvaruteknik

Robotteknik och automation

Reglerteknik

DOI

10.1109/TCST.2023.3291562

Mer information

Senast uppdaterat

2024-03-07