Cost-Efficient Online Decision Making: A Combinatorial Multi-Armed Bandit Approach
Preprint, 2023

Online decision making plays a crucial role in numerous real-world applications. In many scenarios, the decision is made based on performing a sequence of tests on the incoming data points. However, performing all tests can be expensive and is not always possible. In this paper, we provide a novel formulation of the online decision making problem based on combinatorial multi-armed bandits and take the cost of performing tests into account. Based on this formulation, we provide a new framework for cost-efficient online decision making which can utilize posterior sampling or BayesUCB for exploration. We provide a rigorous theoretical analysis for our framework and present various experimental results that demonstrate its applicability to real-world problems.

Författare

Arman Rahbar

Chalmers, Data- och informationsteknik, Data Science och AI

Niklas Åkerblom

Chalmers, Data- och informationsteknik, Data Science och AI

Morteza Haghir Chehreghani

Chalmers, Data- och informationsteknik, Data Science och AI

EENE: Energieffektiv Navigering för Elfordon

FFI - Fordonsstrategisk forskning och innovation (2018-01937), 2019-01-01 -- 2022-12-31.

Styrkeområden

Informations- och kommunikationsteknik

Transport

Ämneskategorier

Sannolikhetsteori och statistik

Datavetenskap (datalogi)

DOI

10.48550/arXiv.2308.10699

Mer information

Senast uppdaterat

2024-12-09