Galerkin-Chebyshev approximation of Gaussian random fields on compact Riemannian manifolds
Artikel i vetenskaplig tidskrift, 2023

A new numerical approximation method for a class of Gaussian random fields on compact Riemannian manifolds is introduced. This class of random fields is characterized by the Laplace-Beltrami operator on the manifold. A Galerkin approximation is combined with a polynomial approximation using Chebyshev series. This so-called Galerkin-Chebyshev approximation scheme yields efficient and generic sampling algorithms for Gaussian random fields on manifolds. Strong and weak orders of convergence for the Galerkin approximation and strong convergence orders for the Galerkin-Chebyshev approximation are shown and confirmed through numerical experiments.

Whittle-Matérn fields

Compact Riemannian manifolds

Strong convergence

Laplace-Beltrami operator

Chebyshev polynomials

Galerkin approximation

Gaussian random fields

Weak convergence

Författare

Annika Lang

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Göteborgs universitet

Mike Pereira

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

BIT Numerical Mathematics

0006-3835 (ISSN) 1572-9125 (eISSN)

Vol. 63 4 51

Efficienta approximeringsmetoder för stokastiska fält på mångfalder

Vetenskapsrådet (VR) (2020-04170), 2021-01-01 -- 2024-12-31.

STOchastic Traffic NEtworks (STONE)

Chalmers, 2020-02-01 -- 2022-01-31.

Chalmers AI-forskningscentrum (CHAIR), -- .

Stochastic Continuous-Depth Neural Networks

Chalmers AI-forskningscentrum (CHAIR), 2020-08-15 -- .

Styrkeområden

Transport

Ämneskategorier

Beräkningsmatematik

Sannolikhetsteori och statistik

Matematisk analys

Fundament

Grundläggande vetenskaper

DOI

10.1007/s10543-023-00986-8

Mer information

Senast uppdaterat

2024-01-17