STOchastic Traffic NEtworks (STONE)
Forskningsprojekt, 2020
– 2022
Understanding efficiency and behavior aspects in partially automated (vehicular) technology in large-scale (traffic) context is an unsolved problem nowadays. Our main goal is to develop learning methods for uncertain traffic networks. We will rely on interdisciplinary approaches between i) mathematical sciences (stochastic Partial Differential Equations sPDE) ii) traffic flow theory (hyperbolic conservation vehicular laws, network efficiency) and iii) traffic safety analysis (driver behavior, collision probability) glued by probabilistic machine leaning concept. We propose to to learn the 1) parameter variation and 2) solution of sPDE network models. Whilst learning parameters will deliver a probabilistic picture of partially automated traffic networks in terms of congestions, driver behavior, network capacity; learning the solutions of such models enables us to short term predict traffic network behavior.
Deltagare
Annika Lang (kontakt)
Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik
Pinar Boyraz Baykas
Chalmers, Mekanik och maritima vetenskaper, Fordonssäkerhet
Balázs Adam Kulcsár
Chalmers, Elektroteknik, System- och reglerteknik
Mike Pereira
Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik
Finansiering
Chalmers
Finansierar Chalmers deltagande under 2020–2022
Chalmers AI-forskningscentrum (CHAIR)
(Finansieringsperiod saknas)
Relaterade styrkeområden och infrastruktur
Transport
Styrkeområden