Traffic Reaction Model
Preprint, 2021

In this paper a novel non-negative finite volume discretization scheme is proposed for certain first order nonlinear partial differential equations describing conservation laws arising in traffic flow modelling. The spatially discretized model is shown to preserve several fundamentally important analytical properties of the conservation law (e.g., conservativeness, capacity) giving rise to a set of (second order) polynomial ODEs. Furthermore, it is shown that the discretized traffic flow model is formally kinetic and that it can be interpreted in a compartmental context. As a consequence, traffic networks can be represented as reaction graphs. It is shown that the model can be equipped with on- and off- ramps in a physically meaningful way, still preserving the advantageous properties of the discretization. Numerical case studies include empirical convergence tests, and the stability analysis presented in the paper paves the way to scalable observer and controller design.

traffic flow theory

traffic modeling LWR

hyperbolic PDE

chemical reation network

PDE

numerical scheme

nonlinear ODE

Författare

Gyorgy Liptak

Pázmány Péter Katolikus Egyetem

Mike Pereira

Göteborgs universitet

Balázs Adam Kulcsár

Chalmers, Elektroteknik, System- och reglerteknik

Mihaly Kovacs

Chalmers, Matematiska vetenskaper

Gabor Szederkenyi

Pázmány Péter Katolikus Egyetem

STOchastic Traffic NEtworks (STONE)

Chalmers AI-forskningscentrum (CHAIR), -- .

Chalmers, 2020-02-01 -- 2022-01-31.

IRIS: Inverse förstärkning-lärande och intelligenta svarmalgoritmer för elastiska transportnät

Chalmers, 2020-01-01 -- 2021-12-31.

Optimal energihantering för nätverk av elektrifierade bussar (OPNET)

Energimyndigheten (46365-1), 2018-10-01 -- 2021-12-31.

Styrkeområden

Transport

Ämneskategorier (SSIF 2011)

Teknisk mekanik

Beräkningsmatematik

Reglerteknik

Mer information

Senast uppdaterat

2022-09-05