Mean-square exponential stabilization of coupled hyperbolic systems with random parameters
Paper i proceeding, 2023

In this paper, we consider a system of two coupled scalar-valued hyperbolic partial differential equations (PDEs) with random parameters. We formulate a
stability condition under which the classical backstepping controller (designed for a nominal system whose parameters are constant) stabilizes the system. More precisely, we guarantee closed-loop mean-square exponential stability under random system parameter perturbations, provided the nominal parameters are sufficiently close to the stochastic ones on average. The proof is based on a Lyapunov analysis, the Lyapunov functional candidate describing the contraction of L2-norm of the system states. An illustrative traffic flow regulation example shows the viability and importance of the proposed result

Traffic flow

Probabilistic robustness

PDE

robust control

Backstepping control of distributed parameter systems

Control of hyperbolic systems and conservation laws

Traffic control

Författare

Jean Auriol

Université Paris-Saclay

Mike Pereira

Chalmers, Elektroteknik, System- och reglerteknik

Balázs Adam Kulcsár

Chalmers, Elektroteknik, System- och reglerteknik

IFAC-PapersOnLine

24058971 (ISSN) 24058963 (eISSN)

Vol. 56 2 8153-8158

22nd IFAC World Congress
Yokohama, Japan,

STOchastic Traffic NEtworks (STONE)

Chalmers AI-forskningscentrum (CHAIR), -- .

Chalmers, 2020-02-01 -- 2022-01-31.

Styrkeområden

Transport

Ämneskategorier

Beräkningsmatematik

Sannolikhetsteori och statistik

Reglerteknik

Annan elektroteknik och elektronik

DOI

10.1016/j.ifacol.2023.10.991

Mer information

Senast uppdaterat

2024-02-23