An Algorithm for Tunable Memory Compression of Time-Based Windows for Stream Aggregates
Paper i proceeding, 2024
Based on this observation, this work proposes an algorithm for streaming aggregation that allows for control of memory usage through lossless compression. The algorithm provides a "knob" to control the amount of state that should be compressed, prioritizing the compression of old over fresh data when performing streaming aggregation. Together with a detailed algorithmic description, this work presents preliminary results from a fully implemented prototype on top of the Liebre SPE, showing the effectiveness of the proposed approach.
Compression
Stream Processing
Stream Aggregate
Författare
Vincenzo Massimiliano Gulisano
Chalmers, Data- och informationsteknik, Dator- och nätverkssystem
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
03029743 (ISSN) 16113349 (eISSN)
Vol. 14351 LNCS 18-299783031506833 (ISBN)
Limassol, Cyprus,
Relaxed Semantics Across the Data Analytics Stack (RELAX-DN)
Europeiska kommissionen (EU) (EC/HE/101072456), 2023-03-01 -- 2027-03-01.
AutoSPADA (Automotive Stream Processing and Distributed Analytics) OODIDA Phase 2
VINNOVA (2019-05884), 2020-03-12 -- 2022-12-31.
Ämneskategorier (SSIF 2011)
Datavetenskap (datalogi)
Datorsystem
DOI
10.1007/978-3-031-50684-0_2