Fatigue assessment comparison between a ship motion-based data-driven model and a direct fatigue calculation method
Artikel i vetenskaplig tidskrift, 2023

Ocean-crossing ship structures continuously suffer from wave-induced loads when sailing at sea. The encountered wave loads cause significant variations in ship structural stresses, leading to accumulated fatigue damage. Where large inherent uncertainties still exist, it is now common to use spectral methods for direct fatigue calculation when evaluating ship fatigue. This paper investigates the use of a machine learning technique to establish a model for 2800TEU container vessel fatigue assessment. Measurement data from 3 years of cross-Atlantic sailing demonstrated and validated the machine learning model. In this investigation, the ship’s motions were used as inputs to build a machine learning model. The fatigue damage amounts predicted using a machine learning model were compared with those obtained from full-scale measurements and direct fatigue calculation. The pros and cons of the methods are compared in terms of their capability, robustness, and prediction accuracy.

full-scale measurement

direct calculation

ship motion

ship fatigue

machine learning

Författare

Xiao Lang

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Da wu

Wuhan University of Technology

Wuliu Tian

Beibu Gulf University

Chi Zhang

Wuhan University of Technology

Jonas Ringsberg

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Wengang Mao

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Journal of Marine Science and Engineering

20771312 (eISSN)

Vol. 11 12 1-16 2269

Ämneskategorier

Produktionsteknik, arbetsvetenskap och ergonomi

Annan materialteknik

Farkostteknik

Sannolikhetsteori och statistik

Styrkeområden

Informations- och kommunikationsteknik

Transport

Materialvetenskap

Drivkrafter

Hållbar utveckling

Innovation och entreprenörskap

Fundament

Grundläggande vetenskaper

DOI

10.3390/jmse11122269

Mer information

Senast uppdaterat

2024-01-08