AI/ML-as-a-Service for optical network automation: use cases and challenges [Invited]
Artikel i vetenskaplig tidskrift, 2024

In recent years, artificial intelligence/machine learning (AI/ML) has played a significant role in automating opti- cal networks. Despite this, the methods for creating, deploying, and monitoring AI/ML models still rely heavily on human intervention and trial-and-error. AI/ML-as-a-Service aims at automating the processes associated with AI/ML models, reducing the need for human intervention and thus facilitating the widespread adoption of AI/ML models. In this paper, we introduce the concept of AI/ML-as-a-Service in the context of optical network automation and propose an architecture for realizing this concept. We provide details of a reference imple- mentation that focuses on the model creation stage. The reference implementation is tested using two use cases related to the quality-of-transmission (QoT) estimation of optical channels. We demonstrate that models created through AI/ML-as-a-Service are able to achieve similar performance as manually tuned models while drastically reducing the need for human involvement. Finally, we discuss future challenges and opportunities for applying AI/ML-as-a-Service in optical network automation.

Network automation

Optical networks

Machine learning

Artificial intelligence

Quality-of-Transmission

Författare

Carlos Natalino Da Silva

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Ashkan Panahi

Chalmers, Data- och informationsteknik, Data Science och AI

Nasser Mohammadiha

Chalmers, Data- och informationsteknik, Data Science

Paolo Monti

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Journal of Optical Communications and Networking

1943-0620 (ISSN) 19430639 (eISSN)

Vol. 16 2 A169-A179

Providing Resilient & secure networks [Operating on Trusted Equipment] to CriTical infrastructures (PROTECT)

VINNOVA (2020-03506), 2021-02-01 -- 2024-01-31.

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier

Telekommunikation

Atom- och molekylfysik och optik

Systemvetenskap

DOI

10.1364/JOCN.500706

Relaterade dataset

QoT Dataset Collection [dataset]

URI: https://www.hhi.fraunhofer.de/en/departments/pn/products-and-solutions/qot-dataset-collection.html

Mer information

Senast uppdaterat

2024-02-06