Unsupervised Learning of Biomolecular Dynamics with Multi-Modal Data
Licentiatavhandling, 2024

The functioning of cells critically depends on the dynamics of biomolecular systems, such as proteins or nucleic acids. Biophysical experiments as well as Molecular Dynamics (MD) simulations are the primary techniques to model and understand the kinetics and thermodynamics of biomolecules. Despite their shared focus on molecular dynamics, their results often yield differing conclusions due to computational or observational limitations. Combining the two approaches in multi-modal models leads to a more accurate kinetic and thermodynamic understanding of the systems by compensating for their respective weaknesses. However, this integration presents its own set of challenges due to the differences in resolution and timescales between experimental data and MD simulations. In this thesis, we explore the reconciliation of simulation data with experimental evidence as well as the potential of machine learning (ML) to alleviate some of MD’s fundamental problems. By incorporating experimental constraints, we demonstrate how integrative kinetic models are more accurate with respect to the “true” ensemble while retaining atomic-level detail. Additionally, we discuss ML’s evolving role in the analysis of MD simulation and its potential as an independent method for sampling molecular conformations. The work concludes by highlighting current limitations and future directions for these integrative approaches and proposes potential remedies for ML models to achieve enhanced accuracy and generalizability across different chemical spaces, physical conditions, and timescales. These approaches offer the potential to provide deeper insights into the complex dynamics of biomolecules, which has profound implications for drug design and our understanding biological processes.

biomolecular dynamics

data-driven modeling

integrative structural biology

generative modeling

multi- modal machine learning

statistical mechanics

augmented Markov models

Analysen, EDIT
Opponent: Massimiliano Bonomi, Institut Pasteur, Frankrike

Författare

Christopher Kolloff

Chalmers, Data- och informationsteknik, Data Science och AI

Machine Learning in Molecular Dynamics Simulations of Biomolecular Systems

Comprehensive Computational Chemistry,;(2024)p. 475-492

Kapitel i bok

Rescuing Off-Equilibrium Simulation Data through Dynamic Experimental Data with dynAMMo

Machine Learning: Science and Technology,;Vol. 4(2023)

Artikel i vetenskaplig tidskrift

Ämneskategorier

Bioinformatik (beräkningsbiologi)

Den kondenserade materiens fysik

Utgivare

Chalmers

Analysen, EDIT

Online

Opponent: Massimiliano Bonomi, Institut Pasteur, Frankrike

Mer information

Senast uppdaterat

2024-03-13