Single-cell omics analysis with genome-scale metabolic modeling
Reviewartikel, 2024

Single-cell technologies have been widely used in biological studies and generated a plethora of single-cell data to be interpreted. Due to the inclusion of the priori metabolic network knowledge as well as gene–protein–reaction associations, genome-scale metabolic models (GEMs) have been a powerful tool to integrate and thereby interpret various omics data mostly from bulk samples. Here, we first review two common ways to leverage bulk omics data with GEMs and then discuss advances on integrative analysis of single-cell omics data with GEMs. We end by presenting our views on current challenges and perspectives in this field.

Författare

Yu Chen

Shenzhen Institute of Advanced Technology

Johan Gustafsson

Chalmers, Biologi och bioteknik

Göteborgs universitet

Broad Institute

Jingyu Yang

Shenzhen Institute of Advanced Technology

Jens B Nielsen

Chalmers, Life sciences, Systembiologi

BioInnovation Institute

Eduard Kerkhoven

Novo Nordisk Fonden

Chalmers, Life sciences, Systembiologi

Current Opinion in Biotechnology

0958-1669 (ISSN) 1879-0429 (eISSN)

Vol. 86 103078

Uppvaknande av kryptiska biosyntetiska genkluster med fet röd jäst

Vetenskapsrådet (VR) (2019-04624), 2019-12-01 -- 2023-11-30.

Ämneskategorier

Bioinformatik (beräkningsbiologi)

Bioinformatik och systembiologi

DOI

10.1016/j.copbio.2024.103078

PubMed

38359604

Mer information

Senast uppdaterat

2024-03-01