A unified thermodynamic and kinetic approach for prediction of microcapsule morphologies
Artikel i vetenskaplig tidskrift, 2024

Hypothesis: Microcapsule formation, following internal phase separation by solvent evaporation, is controlled by two main factors of thermodynamic and kinetic origin. Morphology prediction has previously focused on the final thermodynamical state in terms of spreading conditions, limiting the prediction accuracy. By additionally considering kinetic effects as the emulsion droplet evolves through the two-phase region of its ternary phase diagram during solvent evaporation, this should enhance prediction accuracy and explain a wider range of morphologies. Experiments: Dynamical interfacial tensions, and thereby spreading coefficients, during the formation of poly(methyl methacrylate) and poly(D,L-lactic-co-glycolic acid) microcapsules were measured by first establishing the boundaries and tie-lines of the ternary system in the emulsion droplets. Kinetic effects during the formation were investigated by varying the solvent evaporation rate and hence the time for polymer shell formation equilibration. The theory was validated by comparing predicted morphologies to microscopic snapshots of intermediate and final morphologies. Findings: The proposed theory explained both intermediate acorn and core–shell morphologies, where a late transition from acorn to core–shell produced microcapsules containing highly off-centered cores. By considering the kinetic factors, the formulation could be altered from yielding kinetically frozen acorns to core–shell and from yielding multicore to single core microcapsules.

Internal phase separation

PLGA

Core–shell

PMMA

Microencapsulation

Spreading

Författare

Viktor Eriksson

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Sofia Edegran

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Matilda Croy

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Lars Evenäs

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Markus Andersson Trojer

Chalmers, Kemi och kemiteknik, Tillämpad kemi

RISE Research Institutes of Sweden

Journal of Colloid and Interface Science

0021-9797 (ISSN) 1095-7103 (eISSN)

Vol. 662 572-582

Smarta, miljövänliga och synergistiska cocktails mot biologisk påväxt för en giftfri miljö: formulering och ekotoxikologiska analyser

Formas (2018-02284), 2018-12-01 -- 2022-11-30.

Ämneskategorier

Fysikalisk kemi

DOI

10.1016/j.jcis.2024.01.191

PubMed

38367575

Mer information

Senast uppdaterat

2024-03-01