At the heart of Quantum Materials: Magnetism as a means and an end from a muon perspective
Doktorsavhandling, 2024

Visa mer

magnetism, ion dynamics, phase transitions, muon spectroscopy, correlated systems, quantum materials

Författare

Konstantinos Papadopoulos

Chalmers, Fysik, Materialfysik

Inkluderade delarbeten

Intertwined magnetic sublattices in the double perovskite compound LaSrNiReO6

Physical Review B,;Vol. 102(2020)

Artikel i vetenskaplig tidskrift

Influence of the magnetic sublattices in the double perovskite LaCaNiReO6

Physical Review B,;Vol. 106(2022)

Artikel i vetenskaplig tidskrift

Photophysical Ion Dynamics in Hybrid Perovskite MAPbX3 (X=Br, Cl) Single Crystals

Advanced Physics Research,;Vol. 3(2024)

Artikel i vetenskaplig tidskrift

Magnetic phases of a skyrmion host candidate superlattice CoFeB/Ru/Pt probed with low energy muon-spin spectroscopy -Konstantinos Papadopoulos, Ola Kenji Forslund, Yuqing Ge, Lars Börjesson, Fernando Ajejas, Vincent Cros, Zaher Salman, Nicolas Reyren, Thomas Prokscha, Yasmine Sassa

Manuskript

Spin dynamics in the Van der Waals magnet CrCl3 - Ola Kenji Forslund, Konstantinos Papadopoulos, Elisabetta Nocerino, Gaia Di Berardino, Chennan Wang, Jun Sugiyama, Daniel Andreica, Alexander N. Vasiliev, Mahmoud Abdel-Hafiez, Martin Månsson, Yasmine Sassa

Manuskript

Populärvetenskaplig beskrivning

Engelska

The magnetic and electronic properties of materials are intrinsically determined by their elemental composition, microscopic geometric structure, and the collective interactions involving lattice, charge, spin, and orbital degrees of freedom. By modulating external parameters in their environment, such as magnetic field strength and temperature, materials may undergo transitions to distinct phases, each exhibiting unique properties. In this regard, solid state physics research focuses on the controlled fabrication and investigation of materials down to the atomic level. The development of new, enhanced and specifically tailored material properties is the key for advances and innovations in modern technology.

This thesis focuses on the study of emerging phases in selected materials in a controlled environment, as a result of their internal interactions. The primary experimental technique, positive muon spin rotation, relaxation and resonance (μ+SR), employs spin-polarized, positive muons as magnetic probes positioned at interstitial crystal-lattice sites. By observing the development of static and dynamic internal magnetic fields, valuable insights into magnetic ordering and ionic motion are acquired.

Kategorisering

Drivkrafter

Hållbar utveckling

Styrkeområden

Nanovetenskap och nanoteknik

Energi

Materialvetenskap

Fundament

Grundläggande vetenskaper

Infrastruktur

Chalmers materialanalyslaboratorium

Ämneskategorier (SSIF 2011)

Den kondenserade materiens fysik

Identifikatorer

ISBN

978-91-8103-021-1

Övrigt

Serie

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5479

Utgivare

Chalmers

Examination

2024-03-26 13:30

PJ seminar room

Opponent: Pierre Dalmas de Réotier, French Alternative Energies and Atomic Energy Commission (CEA), Grenoble, France

Mer information

Senast uppdaterat

2024-03-07