Consolidation of water-atomized chromium-nickel-alloyed powder metallurgy steel through novel processing routes
Artikel i vetenskaplig tidskrift, 2024

When processing powder metallurgy (PM) steels, the conventional press and sinter route can reach a relative density up to 95%, which is insufficient for applications when dynamic mechanical performance is critical. In this study, a novel route is demonstrated consisting of cold isostatic pressing (CIP) followed by sintering and capsule-free hot isostatic pressing (HIP), allowing to achieve full density PM steels. Water-atomized steel powder admixed with 2 wt.% Ni was subjected to CIP and followed by sintering in 90N2/10H2 atmosphere at 1120 and 1250 degrees C, and in vacuum (10-2 mbar) at 1250 and 1350 degrees C, respectively. At the highest explored CIP pressure of 600 MPa, the three high-temperature sintering runs at 1250 degrees C in 90N2/10H2 atmosphere and vacuum, and 1350 degrees C in vacuum resulted in relative density of similar to 94% and closed surface pores. This condition with necessary closed porosity then allowed subsequent capsule-free HIP after sintering, resulting in full densification of the components.

capsule-free hot isostatic pressing

sintering

powder metallurgy

full densification

cold isostatic pressing

Författare

Anok Babu Nagaram

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Maheswaran Vattur Sundaram

Höganäs

Johannes Gardstam

Quintus Technologies AB

Michael Andersson

Höganäs

Zhuoer Chen

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Eduard Hryha

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Lars Nyborg

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Powder Metallurgy

0032-5899 (ISSN) 1743-2901 (eISSN)

Vol. 67 1 6-17

Heltäta PM-stål via nya processvägar

VINNOVA (2018-02371), 2018-07-01 -- 2021-06-30.

LIGHTer Academy Etapp 3

VINNOVA (2020-04526), 2024-02-05 -- 2025-12-31.

Ämneskategorier (SSIF 2011)

Metallurgi och metalliska material

DOI

10.1177/00325899231213007

Mer information

Senast uppdaterat

2024-05-06