Dissipative and dispersive cavity optomechanics with a frequency-dependent mirror
Artikel i vetenskaplig tidskrift, 2024

An optomechanical microcavity can considerably enhance the interaction between light and mechanical motion by confining light to a subwavelength volume. However, this comes at the cost of an increased optical loss rate. Therefore, microcavity-based optomechanical systems are placed in the unresolved-sideband regime, preventing sideband-based ground-state cooling. A pathway to reduce optical loss in such systems is to engineer the cavity mirrors, i.e., the optical modes that interact with the mechanical resonator. In our work, we analyze such an optomechanical system, whereby one of the mirrors is strongly frequency dependent, i.e., a suspended Fano mirror. This optomechanical system consists of two optical modes that couple to the motion of the suspended Fano mirror. We formulate a quantum-coupled-mode description that includes both the standard dispersive optomechanical coupling as well as dissipative coupling. We solve the Langevin equations of the system dynamics in the linear regime showing that ground-state cooling from room temperature can be achieved even if the cavity is per se not in the resolved-sideband regime, but achieves effective sideband resolution through strong-optical-mode coupling. Importantly, we find that the cavity output spectrum needs to be properly analyzed with respect to the effective laser detuning to infer the phonon occupation of the mechanical resonator. Our work also predicts how to reach the regime of nonlinear quantum optomechanics in a Fano-based microcavity by engineering the properties of the Fano mirror.

Författare

Juliette Monsel

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Anastasiia Ciers

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Sushanth Kini Manjeshwar

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Witlef Wieczorek

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Janine Splettstösser

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Physical Review A

24699926 (ISSN) 24699934 (eISSN)

Vol. 109 4 043532

Styrkeområden

Nanovetenskap och nanoteknik

Ämneskategorier

Astronomi, astrofysik och kosmologi

Atom- och molekylfysik och optik

Annan fysik

Annan elektroteknik och elektronik

Den kondenserade materiens fysik

DOI

10.1103/PhysRevA.109.043532

Mer information

Senast uppdaterat

2024-12-13