Facing Complex Soft Matter: Tools, Validation, and Case Studies
Doktorsavhandling, 2024
This status is a challenge for traditional material theory that normally relies on at least some measurement input: with complex soft matter we must start by making plausible predictions for the structure that may have multiple relevant phases.
This thesis develops computational tools and methods capable of predicting and analyzing the behavior of complex soft matter. We advance the application of Density Functional Theory through the development of new computational tools, notably a range-separated hybrid van der Waals Density Functional (vdW-DF) called AHCX. AHCX integrates non-local correlation and exchange mechanisms, demonstrating enhanced accuracy and transferability across various problems, from thermophysical properties in bulk materials to molecular and adsorbate systems. Additionally, this thesis work documents the implementation of the vdW-DF spin-stress tensor in \textsc{Quantum ESPRESSO}, enabling efficient predictions of spin-polarized systems and magnetic properties.
We apply AHCX, and the latest range-separated hybrid vdW-DF termed AHBR, to characterize the activation of oxygen in complex catalytic systems such as Cu-Chabazite zeolites and enzymatic crystals. We prove the utility of these functionals in accurately modeling both chemical and physical binding without empirical adjustments.
Finally, I introduce our methods and tools to study the properties of orthorhombic phases of polyvinylidene fluoride (PVDF) and polyvinyl fluoride (PVF).
We contrast these with those of polyethylene (PE) using the related vdW-DF-cx functional. Unlike PVDF and PE, PVF lacks a definitive experimental consensus on its structure, and is an example of a complex soft-matter problem. We validate vdW-DF-cx's accuracy with PE and PVDF and extend our analysis to the PVF system, allowing for the impact of thermal excitations. This investigation furthermore predicts PVF's mechanical behavior, polarization response, and plastic deformation.
In summary, the thesis seeks to enhance the understanding of complex soft matter and improve theoretical tools for predicting their behavior.
Flourinated Polymer Crystals
Soft Matter
van der Waals Density Functionals
Catalysis
Spin-Polarized Systems
Density Functional Theory
Complex Matter
Författare
Carl Mikael Frostenson
Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial
Carl Frostenson, P är A. T. Olsson and Per Hyldgaard, Fluorinated Polymer Crystals: Structure predictions, nature of slippage, and possibility of finite-temperature ferroelectricity in a complex soft material
Carl Frostenson, Yingxin Feng, Per Hyldgaard, and Henrik Grönbeck, Range-Separated Hybrid van der Waals Density Functional to Describe Cu2O2-complexes
VdW-DF-ahcx: A range-separated van der Waals density functional hybrid
Journal of Physics Condensed Matter,;Vol. 34(2022)
Artikel i vetenskaplig tidskrift
Hard and soft materials: Putting consistent van der Waals density functionals to work
Electronic Structure,;Vol. 4(2022)
Artikel i vetenskaplig tidskrift
I denna tes avhandlas nya beräkningsbaserade verktyg som hjälper forskare att analysera och förutsäga egenskaper hos mjuka material. Vi utökar täthetsfunktionalsteori med en ny funktionalvariant i kategorin hybrida van der Waals-funktionaler. Denna funktional är särskilt bra på att hantera de små men avgörande interaktionerna mellan molekyler som kallas van der Waals-krafter. Därutöver har vi utvecklat verktyg för att förutsäga magnetiska egenskaper hos material där van der Waals spelar en viktig roll.
Vi har tillämpat dessa metoder för att utforska zeoliter, som bland annat används för att rena avgaser i dieselmotorer, och enzymatiska kristaller som är viktiga i biologiska processer. Därtill studeras polymerkristallerna polyvinylidenfluorid (PVDF) som kan användas i mekaniska sensorer, och polyvinylfluorid (PVF) som ofta nyttjas i förpackingar och skyddande beläggningar. Trots att det saknas experimentell konsensus om PVF:s struktur har vi kunnat använda våra beräkningsverktyg för att förutsäga ett antal av dess egenskaper.
Introduktion och användning av generaliserad Kohn-Sham van der Waals täthedsfunktional: Laddningsomfördelningar vid svag växelverkan
Vetenskapsrådet (VR) (2022-03277), 2023-01-01 -- 2026-12-31.
Laddningsöverförsel vid gränsytor i mjuka material: en utmaning för icke-lokal täthetsfunktionalteori
Vetenskapsrådet (VR) (2018-03964), 2019-01-01 -- 2022-12-31.
Ett ramverk för fysikbaserad uppskattning av verktygsförslitning i skärande bearbetning
VINNOVA (2020-05179), 2021-03-22 -- 2024-11-20.
Styrkeområden
Nanovetenskap och nanoteknik
Produktion
Materialvetenskap
Fundament
Grundläggande vetenskaper
Infrastruktur
C3SE (Chalmers Centre for Computational Science and Engineering)
Ämneskategorier (SSIF 2011)
Företagsekonomi
Teoretisk kemi
Den kondenserade materiens fysik
ISBN
978-91-8103-061-7
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5519
Utgivare
Chalmers
PJ-salen
Opponent: Karsten Wedel Jacobsen, Technical University of Denmark, Kgs. Lyngby, Denmark