Explainable Reinforcement Learning: Towards Trustworthy Autonomous Network Operations
Övrigt konferensbidrag, 2024

Reinforcement learning represents a promising solution for complex network automation tasks. However, it also poses unique challenges when it comes to extracting explainable decisions. In this keynote, present an overview of the current architectures for network automation. Then, we explore how reinforcement learning has been used, with a specific use case example. Then, we discuss the challenges in extracting explanations, analyzing some preliminary results. Finally, the open challenges are discussed.

Författare

Carlos Natalino Da Silva

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

1st International Workshop on Trustworthy and Explainable Artificial Intelligence for Networks (TX4Nets) 2024, IFIP/IEEE Networking 2024
Thessaloniki, Greece,

Providing Resilient & secure networks [Operating on Trusted Equipment] to CriTical infrastructures (PROTECT)

VINNOVA (2020-03506), 2021-02-01 -- 2024-01-31.

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier

Telekommunikation

Datavetenskap (datalogi)

Datorsystem

Datorseende och robotik (autonoma system)

Mer information

Senast uppdaterat

2024-06-04