Multi-RIS-Assisted 3D Localization and Synchronization via Deep Learning
Artikel i vetenskaplig tidskrift, 2024

Reconfigurable intelligent surfaces (RISs) have received considerable attention in applications related to localization. However, operation in multi-path scenarios is challenging from both complexity and performance perspectives. This study presents a two-stage low complexity method for joint three-dimensional (3D) localization and synchronization using multiple RISs. Firstly, the received signals are preprocessed, and an efficient deep learning architecture is proposed to initially estimate the angles of departure (AODs) of the virtual line of sight paths from the RISs to the user. Then, a hybrid asynchronous AOD time-of-arrival-based approach is proposed in the first stage to estimate an initial guess of the position of the user equipment (UE). Finally, in the second stage, an optimization problem is formulated to refine the position of the UE by effectively utilizing the estimated delays and the clock offset. Our comparative study reveals that the proposed method outperforms the existing methods in terms of accuracy and complexity. Notably, the proposed method showcases enhanced robustness against multipath effects when compared to the state-of-the-art approaches.

reconfigurable intelligent surface

synchronization

3D localization

deep learning

mmWave

Författare

Alireza Fadakar

University of Tehran

Maryam Sabbaghian

University of Tehran

Henk Wymeersch

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

IEEE Open Journal of the Communications Society

2644125X (eISSN)

Vol. 5 3299-3314

Hårdvarumedveten integrerad lokalisering och avkänning för kommunikationssystem

Vetenskapsrådet (VR) (2022-03007), 2023-01-01 -- 2026-12-31.

6G DISAC

Europeiska kommissionen (EU) (101139130-6G-DISAC), 2024-01-01 -- 2026-12-31.

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier (SSIF 2011)

Kommunikationssystem

Robotteknik och automation

Signalbehandling

DOI

10.1109/OJCOMS.2024.3399605

Mer information

Senast uppdaterat

2025-01-05