Simulating nonlinear optical effects in periodically patterned integrated waveguides
Licentiatavhandling, 2024
need for very long waveguides in integrated optics in order to achieve nonlinear optical
processes such as optical parametric oscillation with appreciable efficiency, meter-long
waveguide structures not being uncommon. This in turn makes simulations of nonlin-
ear integrated optical devices challenging. Translationally invariant waveguides can be
simulated using approximate methods such as the the beam envelope method. How-
ever, for more complicated structures, for instance a periodically patterned waveguide,
these approaches becomes unfeasible. In this thesis, we describe how the nonlinear
wave propagation in periodically patterned waveguides can be simulated using the non-
linear Schrödinger equation, including a computational strategy to calculate the coeffi-
cients of the nonlinear Schrödinger equation describing the linear and nonlinear effects
of the optical materials. In particular, we focus on effective meshing strategies for simu-
lations using the finite-element method and an approach to numerically determine the
higher-order dispersion coefficients needed to solve the nonlinear Schrödinger equa-
tion for long, periodically patterned structures.
four wave mixing
Keywords: Nanophotonics
FEM
nonlinear optics
FWM
OPA
parametric amplifiers
Författare
Albin Jonasson Svärdsby
Chalmers, Fysik, Kondenserad materie- och materialteori
Adaptive meshing strategies for nanophotonics using a posteriori error estimation
Optics Express,;Vol. 32(2024)p. 24592-24602
Artikel i vetenskaplig tidskrift
Ämneskategorier
Beräkningsmatematik
Den kondenserade materiens fysik
Infrastruktur
C3SE (Chalmers Centre for Computational Science and Engineering)
Utgivare
Chalmers
PJ-salen, Fysik Origo byggnad, Kemivägen 1
Opponent: Prof. Istvan Pusztai, Department of Physics, Chalmers, Sweden