Characterization of process-related interfacial dielectric loss in aluminum-on-silicon by resonator microwave measurements, materials analysis, and imaging
Artikel i vetenskaplig tidskrift, 2024

We systematically investigate the influence of the fabrication process on dielectric loss in aluminum-on-silicon superconducting coplanar waveguide resonators with internal quality factors (Qi) of about one million at the single-photon level. These devices are essential components in superconducting quantum processors; they also serve as proxies for understanding the energy loss of superconducting qubits. By systematically varying several fabrication steps, we identify the relative importance of reducing loss at the substrate–metal and substrate–air interfaces. We find that it is essential to clean the silicon substrate in hydrogen fluoride (HF) prior to aluminum deposition. A post-fabrication removal of the oxides on the surface of the silicon substrate and the aluminum film by immersion in HF further improves the Qi. We observe a small, but noticeable, adverse effect on the loss by omitting either standard cleaning (SC1), pre-deposition heating of the substrate to 300 °C, or in situ post-deposition oxidation of the film’s top surface. We find no improvement due to excessive pumping meant to reach a background pressure below 6 × 10−8 mbar. We correlate the measured loss with microscopic properties of the substrate–metal interface through characterization with x-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, transmission electron microscopy, energy-dispersive x-ray spectroscopy, and atomic force microscopy.

Författare

Lert Chayanun

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Janka Biznárová

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Lunjie Zeng

Chalmers, Fysik, Nano- och biofysik

Per Malmberg

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Andreas Nylander

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Amr Osman

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Marcus Rommel

Chalmers, Mikroteknologi och nanovetenskap, Nanotekniklaboratoriet

Eric Tam

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Eva Olsson

Chalmers, Fysik, Nano- och biofysik

Per Delsing

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Avgust Yurgens

Fysik, kemi och bioteknik samt matematik och tekniskt basår

Jonas Bylander

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Anita Fadavi Roudsari

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

APL Quantum

2835-0103 (ISSN)

Vol. 1 026115

Ämneskategorier

Annan fysik

Den kondenserade materiens fysik

DOI

10.1063/5.0208140

Mer information

Skapat

2024-08-28