Full Density Powder Metallurgical Cold Work Tool Steel through Nitrogen Sintering and Capsule-Free Hot Isostatic Pressing
Artikel i vetenskaplig tidskrift, 2024

Vanadis 4E (V4E) is a powder metallurgical cold work tool steel predominantly used in application with demand for wear resistance, high hardness, and toughness. It is of interest to have a processing route that enables full density starting from clean gas-atomized powder allowing component shaping capabilities. This study presents a process involving freeze granulation of powder to facilitate compaction by means of cold isostatic pressing, followed by sintering to allow for capsule-free hot isostatic pressing (HIP) and subsequent heat treatments of fully densified specimens. The sintering stage has been studied in particular, and it is shown how sintering in pure nitrogen at 1150 °C results in predominantly closed porosity, while sintering at 1200 °C gives near full density. Microstructural investigation shows that vanadium-rich carbonitride (MX) is formed as a result of the nitrogen uptake during sintering, with coarser appearance for the higher temperature. Nearly complete densification, approximately 7.80 ± 0.01 g/cm3, was achieved after sintering at 1200 °C, and after sintering at 1150 °C, followed by capsule-free HIP, hardening, and tempering. Irrespective of processing once the MX is formed, the nitrogen is locked into this phase and the austenite is stabilised, which means any tempering tends to result in a mixture of austenite and tempered martensite, the former being predominate during the sequential tempering, whereas martensite formation during cooling from austenitization temperatures becomes limited.

sintering

full densification

cold work tool steel

freeze granulation

capsule-free hot isostatic pressing

Författare

Anok Babu Nagaram

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Giulio Maistro

Uddeholm

E. Adolfsson

Swerea

Emmy Cao

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Eduard Hryha

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Lars Nyborg

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Metals

2075-4701 (eISSN)

Vol. 14 8 914

Ämneskategorier

Annan materialteknik

Metallurgi och metalliska material

DOI

10.3390/met14080914

Mer information

Senast uppdaterat

2024-09-09