Performance of European chemistry transport models as function of horizontal resolution
Artikel i vetenskaplig tidskrift, 2015

Air pollution causes adverse effects on human health as well as ecosystems and crop yield and also has an impact on climate change trough short-lived climate forcers. To design mitigation strategies for air pollution, 3D Chemistry Transport Models (CTMs) have been developed to support the decision process. Increases in model resolution may provide more accurate and detailed information, but will cubically increase computational costs and pose additional challenges concerning high resolution input data. The motivation for the present study was therefore to explore the impact of using finer horizontal grid resolution for policy support applications of the European Monitoring and Evaluation Programme (EMEP) model within the Long Range Transboundary Air Pollution (LRTAP) convention. The goal was to determine the “optimum resolution” at which additional computational efforts do not provide increased model performance using presently available input data. Five regional CTMs performed four runs for 2009 over Europe at different horizontal resolutions.
The models’ responses to an increase in resolution are broadly consistent for all models. The largest response was found for NO2 followed by PM10 and O3. Model resolution does not impact model performance for rural background conditions. However, increasing model resolution improves the model performance at stations in and near large conglomerations. The statistical evaluation showed that the increased resolution better reproduces the spatial gradients in pollution regimes, but does not help to improve significantly the model performance for reproducing observed temporal variability. This study clearly shows that increasing model resolution is advantageous, and that leaving a resolution of 50 km in favour of a resolution between 10 and 20 km is practical and worthwhile. As about 70% of the model response to grid resolution is determined by the difference in the spatial emission distribution, improved emission allocation procedures at high spatial and temporal resolution are a crucial factor for further model resolution improvements.

Ozone

Model evaluation

Particulate matter

Air quality

Nitrogen oxides

Författare

M. Schaap

Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek (TNO)

C. Cuvelier

Europeiska kommissionen (EU)

C. Hendriks

Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek (TNO)

B. Bessagnet

Institut National de l'Environnement Industriel et des Risques (INERIS)

J. M. Baldasano

Barcelona Supercomputing Center (BSC)

A. Colette

Institut National de l'Environnement Industriel et des Risques (INERIS)

P. Thunis

Europeiska kommissionen (EU)

D. Karam

Europeiska kommissionen (EU)

H. Fagerli

Meteorologisk institutt

A. Graff

Umweltbundesamt

R. Kranenburg

Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek (TNO)

A. Nyiri

Meteorologisk institutt

M. T. Pay

Barcelona Supercomputing Center (BSC)

L. Rouil

Institut National de l'Environnement Industriel et des Risques (INERIS)

M. Schulz

Meteorologisk institutt

David Simpson

Geovetenskap och fjärranalys

R. Stern

Freie Universität Berlin

E. Terrenoire

Institut National de l'Environnement Industriel et des Risques (INERIS)

P. Wind

Meteorologisk institutt

Universitetet i Tromsø – Norges arktiske universitet

Atmospheric Environment

1352-2310 (ISSN) 1873-2844 (eISSN)

Vol. 112 90-105

ModElling the Regional and Global Earth system (MERGE)

Lunds universitet (9945095), 2010-01-01 -- .

Ämneskategorier

Energisystem

DOI

10.1016/j.atmosenv.2015.04.003

Mer information

Skapat

2024-10-14