2024 roadmap for sustainable batteries
Reviewartikel, 2024

Modern batteries are highly complex devices. The cells contain many components—which in turn all have many variations, both in terms of chemistry and physical properties. A few examples: the active materials making the electrodes are coated on current collectors using solvents, binders and additives; the multicomponent electrolyte, contains salts, solvents, and additives; the electrolyte can also be a solid ceramic, polymer or a glass material; batteries also contain a separator, which can be made of glass fibres, polymeric, ceramic, composite, etc. Moving up in scale all these components are assembled in cells of different formats and geometries, coin cells and Swagelok cells for funamental testing and understanding, and pouch, prismatic and cylindrical cells for application. Given this complexity dictated by so many components and variations, there is no wonder that addressing the crucial issue of true sustainability is an extremely challenging task. How can we make sure that each component is sustainable? How can the performance can be delivered using more sustainable battery components? What actions do we need to take to address battery sustainability properly? How do we actually qualify and quantify the sustainability in the best way possible? And perhaps most importantly; how can we all work—academia and battery industry together—to enable the latter to manufacture more sustainable batteries for a truly cleaner future? This Roadmap assembles views from experts from academia, industry, research institutes, and other organisations on how we could and should achieve a more sustainable battery future. The palette has many colours: it discusses the very definition of a sustainable battery, the need for diversification beyond lithium-ion batteries (LIBs), the importance of sustainability assessments, the threat of scarcity of raw materials and the possible impact on future manufacturing of LIBs, the possibility of more sustainable cells by electrode and electrolyte chemistries as well as manufacturing, the important role of new battery chemistries, the crucial role of AI and automation in the discovery of the truly sustainable batteries of the future and the importance of developimg a circular battery economy.

automation

battery

artificial intelligence

batteries

sustainable

lithium-ion batteries

electrolytes

Författare

Magda Titirici

Imperial College London

Patrik Johansson

Chalmers, Fysik, Materialfysik

Alistore - European Research Institute

Maria Crespo Ribadeneyra

Queen Mary University of London

Heather Au

Imperial College London

Alessandro Innocenti

Karlsruher Institut für Technologie (KIT)

Helmholtz

S. Passerini

Helmholtz

Karlsruher Institut für Technologie (KIT)

Sapienza, Università di Roma

Evi Petavratzi

Fastmarkets

Paul Lusty

Fastmarkets

Annika Ahlberg Tidblad

Uppsala universitet

Volvo

Andrew J. Naylor

Uppsala universitet

Reza Younesi

Uppsala universitet

Yvonne A. Chart

University of Oxford

The Faraday Institution

Jack Aspinall

The Faraday Institution

University of Oxford

Mauro Pasta

The Faraday Institution

University of Oxford

Joseba Orive

Basque Research and Technology Alliance (BRTA)

Lakshmipriya Musuvadhi Babulal

Basque Research and Technology Alliance (BRTA)

Marine Reynaud

Basque Research and Technology Alliance (BRTA)

Kenneth G. Latham

Imperial College London

Tomooki Hosaka

Tokyo University of Science

Shinichi Komaba

Tokyo University of Science

J. Bitenc

Kemijski Inštitut

A. Ponrouch

Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)

Heng Zhang

Huazhong University of Science and Technology

Michel Armand

Basque Research and Technology Alliance (BRTA)

Robert Kerr

Deakin University

P. C. Howlett

Deakin University

Maria Forsyth

Deakin University

John Brown

Alistore - European Research Institute

Centre national de la recherche scientifique (CNRS)

Collège de France

Alexis Grimaud

Collège de France

Boston College

Centre national de la recherche scientifique (CNRS)

Marja Vilkman

Teknologian Tutkimuskeskus (VTT)

Kamil Burak Dermenci

Vrije Universiteit Brüssel (VUB)

Seyedabolfazl Mousavihashemi

Teknologian Tutkimuskeskus (VTT)

Maitane Berecibar

Vrije Universiteit Brüssel (VUB)

Jean E. Marshall

The University of Warwick

Con Robert McElroy

University of Lincoln

Emma Kendrick

University of Birmingham

Tayeba Safdar

Imperial College London

The Faraday Institution

Chun Huang

STFC Rutherford Appleton Laboratory

Imperial College London

The Faraday Institution

Franco M. Zanotto

Université de Picardie Jules Verne

Centre national de la recherche scientifique (CNRS)

Javier F. Troncoso

Université de Picardie Jules Verne

Centre national de la recherche scientifique (CNRS)

Diana Zapata Dominguez

Centre national de la recherche scientifique (CNRS)

Université de Picardie Jules Verne

Mohammed Alabdali

Université de Picardie Jules Verne

Utkarsh Vijay

Université de Picardie Jules Verne

Alistore - European Research Institute

Alejandro A. Franco

Université de Picardie Jules Verne

Alistore - European Research Institute

Centre national de la recherche scientifique (CNRS)

Institut Universitaire de France

Sivaraj Pazhaniswamy

University of Oxford

Patrick S. Grant

University of Oxford

Stiven López Guzman

Basque Research and Technology Alliance (BRTA)

Universidad del Pais Vasco / Euskal Herriko Unibertsitatea

Marcus Fehse

Basque Research and Technology Alliance (BRTA)

Montserrat Galceran

Basque Research and Technology Alliance (BRTA)

Néstor Antuñano

Basque Research and Technology Alliance (BRTA)

JPhys Energy

2515-7655 (eISSN)

Vol. 6 4 041502

ERGODIC: Kombinerade person- och godstransporter i förortstrafik

Europeiska kommissionen (EU) (F-DUT-2022-0078), 2023-10-01 -- 2026-09-30.

VINNOVA (ERGODIC), 2023-10-01 -- 2026-09-30.

Europeiska kommissionen (EU) (F-ENUAC-2022-0003), 2023-10-01 -- 2026-09-30.

Ämneskategorier (SSIF 2011)

Materialkemi

DOI

10.1088/2515-7655/ad6bc0

Mer information

Senast uppdaterat

2024-11-08