Casimir energy of hyperbolic orbifolds with conical singularities
Artikel i vetenskaplig tidskrift, 2024

In this article, we obtain the explicit expression of the Casimir energy for compact hyperbolic orbifold surfaces in terms of the geometrical data of the surfaces with the help of zeta-regularization techniques. The orbifolds may have finitely many conical singularities. In computing the contribution to the energy from a conical singularity, we derive an expression of an elliptic orbital integral as an infinite sum of special functions. We prove that this sum converges exponentially fast. Additionally, we show that under a natural assumption known to hold asymptotically on the growth of the lengths of primitive closed geodesics of the (2, 3, 7)-triangle group orbifold, its Casimir energy is positive (repulsive).

Författare

Ksenia Fedosova

Universität Münster

Julie Rowlett

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Genkai Zhang

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Journal of Mathematical Physics

0022-2488 (ISSN) 1089-7658 (eISSN)

Vol. 65 10 101701

Ämneskategorier

Matematisk analys

DOI

10.1063/5.0186488

Mer information

Senast uppdaterat

2024-11-15