A Contextual Combinatorial Semi-Bandit Approach to Network Bottleneck Identification
Paper i proceeding, 2024

Bottleneck identification is a challenging task in network analysis, especially when the network is not fully specified. To address this task, we develop a unified online learning framework based on combinatorial semi-bandits that performs bottleneck identification in parallel with learning the specifications of the underlying network. Within this framework, we adapt and study various combinatorial semi-bandit methods such as epsilon-greedy, LinUCB, BayesUCB, NeuralUCB, and Thompson Sampling. In addition, our framework is capable of using contextual information in the form of contextual bandits. Finally, we evaluate our framework on the real-world application of road networks and demonstrate its effectiveness in different settings.

Contextual bandits

Combinatorial bandits

Online learning

Bottleneck identification

Författare

Fazeleh Sadat Hoseini

Chalmers, Data- och informationsteknik, Dator- och nätverkssystem

Niklas Åkerblom

Volvo Cars

Morteza Haghir Chehreghani

Chalmers, Data- och informationsteknik, Data Science och AI

International Conference on Information and Knowledge Management, Proceedings

21550751 (ISSN)

3782-3786

33rd ACM International Conference on Information and Knowledge Management, CIKM 2024
Boise, USA,

EENE: Energieffektiv Navigering för Elfordon

FFI - Fordonsstrategisk forskning och innovation (2018-01937), 2019-01-01 -- 2022-12-31.

Ämneskategorier (SSIF 2011)

Datavetenskap (datalogi)

DOI

10.48550/arXiv.2206.08144

Mer information

Senast uppdaterat

2024-12-11