Dissecting antibiotic effects on the cell envelope using bacterial cytological profiling: A phenotypic analysis starter kit
Artikel i vetenskaplig tidskrift, 2024
Phenotypic analysis assays such as bacterial cytological profiling (BCP) have become increasingly popular for antibiotic mode of action analysis. A plethora of dyes, protein fusions, and reporter strains are available and have been used for this purpose, enabling both rapid mode of action categorization and in-depth analysis of antibiotic mechanisms. However, non-expert researchers may struggle choosing suitable assays and interpreting results. This is a particular problem for antibiotics that have multiple or complex targets, such as the bacterial cell envelope. Here, we set out to curate a minimal set of accessible and affordable phenotypic assays that allow distinction between membrane and cell wall targets, can identify dual-action inhibitors, and can be implemented in most research environments. To this end, we employed BCP, membrane potential, fluidity, and cell wall synthesis assays. To assess specificity and ease of interpretation, we tested three well-characterized and commercially available reference antibiotics: the potassium ionophore valinomycin, the lipid II-binding glycopeptide vancomycin, and the dual-action lantibiotic nisin, which binds lipid II and forms a membrane pore. Based on our experiments, we suggest a minimal set of BCP, a membrane-potentiometric probe, and fluorescent protein fusions to MinD and MreB as basic assay set and recommend complementing these assays with Laurdan-based fluidity measurements and a PliaI reporter fusion, where indicated. We believe that our results can provide guidance for researchers who wish to use phenotypic analysis for mode of action studies but do not possess the specialized equipment or expert knowledge to employ the full breadth of possible techniques.IMPORTANCEPhenotypic analysis assays using specialized fluorescence fusions and dyes have become increasingly popular in antibiotic mode of action analysis. However, it can be difficult to implement these methods due to the need for specialized equipment and/or the complexity of bacterial cell biology and physiology, making the interpretation of results difficult for non-experts. This is especially problematic for compounds that have multiple or pleiotropic effects, such as inhibitors of the bacterial cell envelope. In order to make phenotypic analysis assays accessible to labs, whose primary expertise is not bacterial cell biology, or with limited equipment and resources, a set of simple and broadly accessible assays is needed that is easy to implement, execute, and interpret. Here, we have curated a set of assays and strains that does not need highly specialized equipment, can be performed in most labs, and is straightforward to interpret without knowing the intricacies of bacterial cell biology.
fluorescence assays
vancomycin.
antimicrobial agents
nisin
valinomycin
bacterial cytological profiling
mechanism of action