The heat kernel on curvilinear polygonal domains in surfaces
Artikel i vetenskaplig tidskrift, 2024

We construct the heat kernel on curvilinear polygonal domains in arbitrary surfaces for Dirichlet, Neumann, and Robin boundary conditions as well as mixed problems, including those of Zaremba type. We compute the short time asymptotic expansion of the heat trace and apply this expansion to demonstrate a collection of results showing that corners are spectral invariants.

Edge

Neumann boundary condition

Isospectral

Heat kernel

Conic singularity

Mixed boundary conditions

Robin boundary condition

Spectrum

Vertex

Heat trace

Zaremba boundary condition

Inverse spectral problem

Surface with corners

Corner

Curvilinear polygon

Dirichlet boundary condition

Spectral invariant

Författare

Medet Nursultanov

Helsingin Yliopisto

Al Farabi Kazakh National University

Julie Rowlett

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

David Sher

DePaul University

Annales Mathematiques du Quebec

21954755 (ISSN) 21954763 (eISSN)

Vol. In Press

Geometrisk analys och tillämpningar i mikrobekologi

Vetenskapsrådet (VR) (2018-03873), 2019-01-01 -- 2022-12-31.

Ämneskategorier (SSIF 2011)

Matematisk analys

DOI

10.1007/s40316-024-00237-4

Mer information

Senast uppdaterat

2025-01-10