A ResNet Approach for AoA and AoD Estimation in Analog Millimeter Wave MIMO Systems
Paper i proceeding, 2024

Parametric millimeter-wave (mmWave) channel estimation involves modeling the channel matrix by combining direction-dependent signal paths, exploiting the sparse nature of mmWave channels. In our study, we propose a deep learning-based approach to estimate angle-of-arrival (AoA) and angle-of-departure (AoD) parameters from input observations in the frequency domain. To address this challenge, we have adapted a residual convolutional neural network (ResNet) to this specific problem and incorporated a technique from topological data analysis, enabling us to accurately retrieve the angular frequencies. Furthermore, we have extended this basic architecture by incorporating a posterior model fitting to enhance the system performance in terms of probability of detection. In our research, we compare the ResNet and extended ResNet approaches with state-of-the-art signal processing techniques and the Crámer-Rao lower bound through simulation. Our results indicate significant improvements in system robustness by increasing the probability of detection while maintaining a reduced estimation error.

deep learning

channel estimation

analog beamforming

mmWave

ResNet

Författare

Diego Lloria

Universitat de Valencia

Sandra Roger

Universitat de Valencia

Carmen Botella-Mascarell

Universitat de Valencia

Maximo Cobos

Universitat de Valencia

Tommy Svensson

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC

21669570 (ISSN) 21669589 (eISSN)


979-8-3503-6224-4 (ISBN)

2024 IEEE 35th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)
Valencia, Spain,

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier (SSIF 2011)

Telekommunikation

Kommunikationssystem

DOI

10.1109/PIMRC59610.2024.10817260

Mer information

Senast uppdaterat

2025-02-17