Zeitlin's model for axisymmetric 3D Euler equations
Artikel i vetenskaplig tidskrift, 2025

Zeitlin's model is a spatial discretisation for the 2D Euler equations on the flat two-torus or the two-sphere. Contrary to other discretisations, it preserves the underlying geometric structure, namely that the Euler equations describe Riemannian geodesics on a Lie group. Here we show how to extend Zeitlin's approach to the axisymmetric Euler equations on the three-sphere. It is the first discretisation of the 3D Euler equations that fully preserves the geometric structure, albeit restricted to axisymmetric solutions. Thus, this finite-dimensional model admits Riemannian curvature and Jacobi equations, which are discussed. We also provide numerical experiments to showcase the method.

Abelian extension

axisymmetric Euler equations

Euler-Arnold equations

Zeitlin's model

sectional curvature

Författare

Klas Modin

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Göteborgs universitet

Stephen C. Preston

City University of New York (CUNY)

Nonlinearity

0951-7715 (ISSN) 13616544 (eISSN)

Vol. 38 2 025008

Långtidsbeteende för tvådimensionella inkompressibla flöden via kvantisering

Vetenskapsrådet (VR) (2022-03453), 2023-01-01 -- 2026-12-31.

Ämneskategorier (SSIF 2025)

Beräkningsmatematik

Matematisk analys

Infrastruktur

Chalmers e-Commons (inkl. C3SE, 2020-)

DOI

10.1088/1361-6544/ada511

Mer information

Senast uppdaterat

2025-02-19