A reduced order pseudochannelmodel accounting for flowmaldistribution in automotivecatalysis
Artikel i vetenskaplig tidskrift, 2025

Exhaust aftertreatment systems (EATS) play a critical role in reducing emissions and ensuring compliance with stringent emission regulations. Catalytic converters, as part of EATS, involve complex physico-chemical processes. To accurately predict their behavior in realistic geometries, transient 
3D models are necessary. However, the computational cost associated with simulations based on such models prevents their application to long-time behaviors as well as in real-time control and diagnostics. While single-channel models (SCMs) are computationally efficient, they struggle to 
provide accurate predictions during real-time operations with flow maldistribution. In this study, we propose a pseudochannel model derived using steady-state reactive 3D simulations and a nonlinear least squares optimization technique. We show that the performance of this pseudochannel model is superior to a conventional SCM in both transient and steady state test cases. At the same time, the computational cost of the pseudochannel model is equivalent to that of the SCM. These results imply that flow maldistribution effects can be well incorporated in SCMs via a pseudochannel approach that 
relies on relatively inexpensive steady-state system data.

3D-CFD

Pseudochannel

1D-SCM

Reduced order model

Catalytic converter

Författare

Pratheeba Chanda Nagarajan

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Henrik Ström

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Jonas Sjöblom

Chalmers, Mekanik och maritima vetenskaper, Energiomvandling och framdrivningssystem

Scientific Reports

2045-2322 (ISSN) 20452322 (eISSN)

Vol. 15 15:5082

Modellering av avgasefterbehandlingssystem för noll-utsläpp

Kompetenscentrum i förbränningsmotorteknik, 2019-06-03 -- 2024-01-31.

Ämneskategorier (SSIF 2025)

Annan kemiteknik

Energiteknik

DOI

10.1038/s41598-025-89756-w

Mer information

Skapat

2025-02-14