Demand-side strategies enable rapid and deep cuts in buildings and transport emissions to 2050
Artikel i vetenskaplig tidskrift, 2025

Decarbonization of energy-using sectors is essential for tackling climate change. We use an ensemble of global integrated assessment models to assess CO2 emissions reduction potentials in buildings and transport, accounting for system interactions. We focus on three intervention strategies with distinct emphases: reducing or changing activity, improving technological efficiency and electrifying energy end use. We find that these strategies can reduce emissions by 51–85% in buildings and 37–91% in transport by 2050 relative to a current policies scenario (ranges indicate model variability). Electrification has the largest potential for direct emissions reductions in both sectors. Interactions between the policies and measures that comprise the three strategies have a modest overall effect on mitigation potentials. However, combining different strategies is strongly beneficial from an energy system perspective as lower electricity demand reduces the need for costly supply-side investments and infrastructure.

Författare

Rik van Heerden

PBL Netherlands Environmental Assessment Agency

Oreane Edelenbosch

PBL Netherlands Environmental Assessment Agency

Universiteit Utrecht

Vassilis Daioglou

Universiteit Utrecht

PBL Netherlands Environmental Assessment Agency

Thomas Le Gallic

Centre International de Recherche sur l'Environnement et le Developpement

Luiz Bernardo Baptista

Universidade Federal do Rio de Janeiro (UFRJ)

Alice Di Bella

Politecnico di Milano

Centro Euro-Mediterraneo per i Cambiamenti Climatici

Euro-Mediterranean Center on Climate Change, Milan

Francesco Pietro Colelli

Universita Ca' Foscari Venezia

Euro-Mediterranean Center on Climate Change, Milan

Centro Euro-Mediterraneo per i Cambiamenti Climatici

Johannes Emmerling

Euro-Mediterranean Center on Climate Change, Milan

Centro Euro-Mediterraneo per i Cambiamenti Climatici

Panagiotis Fragkos

E3M-Modelling

Robin Hasse

Technische Universität Berlin

Potsdam-Institut für Klimafolgenforschung (PIK)

Johanna Hoppe

Technische Universität Berlin

Potsdam-Institut für Klimafolgenforschung (PIK)

Paul Kishmoto

Internationales Institut fuer Angewandte Systemanalyse

Florian Leblanc

Centre International de Recherche sur l'Environnement et le Developpement

Julien Lefèvre

Centre International de Recherche sur l'Environnement et le Developpement

Gunnar Luderer

Technische Universität Berlin

Potsdam-Institut für Klimafolgenforschung (PIK)

Giacomo Marangoni

Centro Euro-Mediterraneo per i Cambiamenti Climatici

Faculteit Techniek, Bestuur en Management, TU Delft

Euro-Mediterranean Center on Climate Change, Milan

Alessio Mastrucci

Internationales Institut fuer Angewandte Systemanalyse

Hazel Pettifor

University of Oxford

Robert Pietzcker

Potsdam-Institut für Klimafolgenforschung (PIK)

Pedro Rochedo

Khalifa University

Bas J. van Ruijven

Internationales Institut fuer Angewandte Systemanalyse

Roberto Schaeffer

Universidade Federal do Rio de Janeiro (UFRJ)

Charlie Wilson

Internationales Institut fuer Angewandte Systemanalyse

University of Oxford

Sonia Yeh

Chalmers, Rymd-, geo- och miljövetenskap, Fysisk resursteori

Eleftheria Zisarou

E3M-Modelling

Detlef van Vuuren

Universiteit Utrecht

PBL Netherlands Environmental Assessment Agency

Nature Energy

20587546 (eISSN)

3077

Ämneskategorier (SSIF 2025)

Annan naturresursteknik

Energiteknik

Energisystem

DOI

10.1038/s41560-025-01703-1

Mer information

Senast uppdaterat

2025-02-21