Structural Battery Electrolytes Based on a Cross-Linked Methacrylate Polymer and a Protic Ionic Liquid: Is There an Optimal Composition?
Artikel i vetenskaplig tidskrift, 2025

Within the development of structural batteries, finding the optimal electrolyte composition, that is, one that offers both high ionic conductivity and mechanical stiffness, is essential. Structural batteries are multifunctional composites able to store electrical energy within load-bearing elements of devices. Their use results in a significant mass reduction, thereby improving fuel efficiency and enabling a shift to sustainable energy. In this work, structural battery electrolytes consisting of a methacrylate-based polymer, 1-ethylimidazolium bis(trifluoromethylsulfonyl)imide protic ionic liquid, and a lithium salt are investigated. Interestingly, the transport properties of the confined liquid electrolyte seem primarily limited by the percolation of the polymer network. Furthermore, upon confinement, a decrease in the glass transition temperature of the polymer phase and weaker intermolecular interactions are observed, which correlate to faster local dynamics. The self-diffusivity of the Li ions keeps high with respect to the other diffusing ions and tends to decouple from the anions upon increased temperature. The composite sample with 50 wt% of liquid electrolyte shows an ionic conductivity of approximate to 0.1 mS cm(-1) with a shear storage modulus of approximate to 150 MPa and was thus selected for proof-of-concept tests by electrochemical methods. Overall, this comprehensive study highlights the versatility of these biphasic systems for various applications.

energy materials

mechanical properties

transport properties

cross-linked polymers

protic ionic liquids

Li ion

thermal properties

Författare

Nicole Abdou

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Achilleas Pipertzis

Nano- och biofysik DP

Richa Chaudhary

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Lars Evenäs

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Johanna Xu

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Leif Asp

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Jan Swenson

Chalmers, Fysik, Nano- och biofysik

Anna Martinelli

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Publicerad i

ADVANCED ENERGY AND SUSTAINABILITY RESEARCH

2699-9412 (ISSN)

art. nr 2500013

Forskningsprojekt

Smart Täthet. En webapplikation för att väga mellan täthetens konsekvenser

Formas (2019-00226), 2019-11-01 -- 2021-04-30.

Kategorisering

Ämneskategorier (SSIF 2025)

Materialkemi

Den kondenserade materiens fysik

Fysikalisk kemi

Styrkeområden

Materialvetenskap

Identifikatorer

DOI

10.1002/aesr.202500013

Mer information

Senast uppdaterat

2025-03-25